Notts Uni innovation could save food manufacturers £100m yearly

Notts Uni AI innovation could save food manufactures £100m yearly
(L-R) Dr Nik Watson, and Ian Sterritt

The University of Nottingham is developing an artificially-intelligent (AI) sensor system to clean food manufacturing equipment more precisely which could save £100 million a year for the UK industry alone.

This AI-driven monitoring system could lead to greater production capacity and therefore cheaper food prices for consumers.

Food and drink production is the largest manufacturing sector in Britain and the highest industrial user of water at approximately 430 million litres a day.

As current technologies cannot accurately determine exactly how dirty food and drink processing equipment is inside, cleaning can last up to five hours a day to minimise food safety risks.

Cleaning accounts for 30 percent of energy and water use and leads to excessive productivity down time and over-use of chemicals, at huge cost to manufacturers and the environment.

This research project, led by Martec of Whitwell in collaboration with the University of Nottingham and Loughborough University, has secured Innovate UK funding to ensure the UK food industry substantially cuts cleaning times and remains a global leader. Dr Nik Watson, assistant professor and chemical engineer specialising in food measurement systems is leading the University of Nottingham team.

He said: “To prevent product contamination, many food and drink manufacturers use a non-invasive, Clean-in-Place (CIP) system to wash inside food processing equipment without disassembling it. As CIP has to operate ‘blind’, it is designed for the worst case scenario. In daily use this often results in the over-cleaning of production lines”.

To overcome this issue, the research team will design and build a lab-scale experimental rig. This facility will reproduce common industrial cleaning problems in a typical food-processing plant, and test conditions using various foods.

They will also assess the potential for an artificial intelligence inspection system to measure precisely how much food residue and microbial debris is left inside the rig. Researchers will test a combination of ultrasonic sensing and optical fluorescence imaging technologies in comparison with existing detection methods for the best results.

Dr Watson is working alongside Dr Elliot Woolley from Loughborough University. The two University partners have scientific expertise and industrial application experience in ultrasonic and optical sensing technologies respectively. The team is led by Derbyshire-based industrial partner, Martec, which specialises in the design, installation and use of CIP and hygienic technologies in food and pharmaceutical manufacturing.

The year-long feasibility study will go on to develop bespoke software to process the sensor data results and generate algorithms for an AI-based monitoring system. This self-predicting system will be able to autonomously optimise the cleaning process in plant equipment in real-time.

For a medium-sized dairy, cleaning typically costs £1 million a year with loss of production time responsible for at least half of that cost. Using SOCIP on a dairy of this size is estimated to reduce annual water usage by 270,000 litres and energy consumption by 2,400 megawatt-hour, leading to net savings of £300,000 a year.